# Causal inference with beta regression

In this ninth post of the causal inference + GLM series, we explore the beta likelihood for continuous data restricted within the range of 0 to 1.

In this ninth post of the causal inference + GLM series, we explore the beta likelihood for continuous data restricted within the range of 0 to 1.

In this post, we explore how we can frame our causal inferences in terms of change from baseline, and how this may or may not involve change scores.

In this seventh post of the causal inference series, we apply our approach to ordinal models. Ordinal models make causal inference tricky, and it’s not entirely clear what the causal estimand should even be. We explore two of the estimands that have been proposed in the literature, and I offer a third estimand of my own.

So far the difficulties we have seen with covaraites, causal inference, and the GLM have all been restricted to discrete models (e.g., binomial, Poisson, negative binomial). In this sixth post of the series, we’ll see this issue can extend to models for continuous data, too. As it turns out, it may have less to do with the likelihood function, and more to do with the choice of link function. To highlight the point, we’ll compare Gaussian and gamma models, with both the identity and log links.

In this fifth post of the causal inference series, we practice with Poisson and negative-binomial models for unbounded count data. Since I’m a glutton for punishment, we practice both as frequentists and as Bayesians. You’ll find a little robust sandwich-based standard error talk, too.

In this fourth post, we refit the models from the previous posts with Bayesian software, and show how to compute our primary estimates when working with posterior draws. The content will be very light on theory, and heavy on methods. So if you don’t love that Bayes, you can feel free to skip this one.

In this third post of the causal inference series, we switch to a binary outcome variable. As we will see, some of the nice qualities from the OLS paradigm fall apart when we want to make causal inferences with binomial models.

In this second post, we learn how the potential outcomes framework can help us connect our regression models to estimands from the contemporary causal inference literature. We start with simple OLS-based models. In future posts, we’ll expand to other models from the GLM.

This is the first post in a series on causal inference. Our ultimate goal is to learn how to analyze data from true experiments, such as RCT’s, with various likelihoods from the generalized linear model (GLM), and with techniques from the contemporary causal inference literature. In this post, we review how baseline covariates help us compare our experimental conditions.

I’ve been thinking a lot about how to analyze pre/post control group designs, lately. Happily, others have thought a lot about this topic, too. The goal of this post is to introduce the change-score and ANCOVA models, introduce their multilevel-model counterparts, and compare their behavior in a couple quick simulation studies. Spoiler alert: The multilevel variant of the ANCOVA model is the winner.

Say you have 2-timepoint RCT, where participants received either treatment or control. Even in the best of scenarios, you’ll probably have some dropout in those post-treatment data. To get the full benefit of your data, you can use one-step Bayesian imputation when you compute your effect sizes. In this post, I’ll show you how.