brms

One-step Bayesian imputation when you have dropout in your RCT

Preamble Suppose you’ve got data from a randomized controlled trial (RCT) where participants received either treatment or control. Further suppose you only collected data at two time points, pre- and post-treatment.

Got overdispersion? Try observation-level random effects with the Poisson-lognormal mixture

What? One of Tristan Mahr’s recent Twitter threads almost broke my brain. wait when people talk about treating overdispersion by using random effects, they sometimes put a random intercept on each row?

Make ICC plots for your brms IRT models

Context Someone recently posted a thread on the Stan forums asking how one might make item-characteristic curve (ICC) and item-information curve (IIC) plots for an item-response theory (IRT) model fit with brms.

Don't forget your inits

tl;dr When your MCMC chains look a mess, you might have to manually set your initial values. If you’re a fancy pants, you can use a custom function.

Effect sizes for experimental trials analyzed with multilevel growth models: Two of two

Orientation This post is the second and final installment of a two-part series. In the first post, we explored how one might compute an effect size for two-group experimental data with only \(2\) time points.

Regression models for 2-timepoint non-experimental data

Purpose In the contemporary longitudinal data analysis literature, 2-timepoint data (a.k.a. pre/post data) get a bad wrap. Singer and Willett (2003, p. 10) described 2-timepoint data as only “marginally better” than cross-sectional data and Rogosa et al.

Multilevel models and the index-variable approach

The set-up PhD candidate Huaiyu Liu recently reached out with a question about how to analyze clustered data. Liu’s basic setup was an experiment with four conditions. The dependent variable was binary, where success = 1, fail = 0.

Bayesian meta-analysis in brms-II

Preamble In Section 14.3 of my (2020a) translation of the first edition of McElreath’s (2015) Statistical rethinking, I included a bonus section covering Bayesian meta-analysis. For my (2020b) translation of the second edition of the text (McElreath, 2020), I’d like to include another section on the topic, but from a different perspective.

Time-varying covariates in longitudinal multilevel models contain state- and trait-level information: This includes binary variables, too

tl;dr When you have a time-varying covariate you’d like to add to a multilevel growth model, it’s important to break that variable into two. One part of the variable will account for within-person variation.

Bayesian power analysis: Part III.b. What about 0/1 data?

Version 1.1.0 Edited on April 21, 2021, to fix a few code breaks and add a Reference section. Orientation In the last post, we covered how the Poisson distribution is handy for modeling count data.